Abstract:Large language models (LLMs) are increasingly multilingual, yet open models continue to underperform relative to proprietary systems, with the gap most pronounced for African languages. Continued pre-training (CPT) offers a practical route to language adaptation, but improvements on demanding capabilities such as mathematical reasoning often remain limited. This limitation is driven in part by the uneven domain coverage and missing task-relevant knowledge that characterize many low-resource language corpora. We present \texttt{AfriqueLLM}, a suite of open LLMs adapted to 20 African languages through CPT on 26B tokens. We perform a comprehensive empirical study across five base models spanning sizes and architectures, including Llama 3.1, Gemma 3, and Qwen 3, and systematically analyze how CPT data composition shapes downstream performance. In particular, we vary mixtures that include math, code, and synthetic translated data, and evaluate the resulting models on a range of multilingual benchmarks. Our results identify data composition as the primary driver of CPT gains. Adding math, code, and synthetic translated data yields consistent improvements, including on reasoning-oriented evaluations. Within a fixed architecture, larger models typically improve performance, but architectural choices dominate scale when comparing across model families. Moreover, strong multilingual performance in the base model does not reliably predict post-CPT outcomes; robust architectures coupled with task-aligned data provide a more dependable recipe. Finally, our best models improve long-context performance, including document-level translation. Models have been released on [Huggingface](https://huggingface.co/collections/McGill-NLP/afriquellm).
Abstract:Multilingual speech foundation models such as Whisper are trained on web-scale data, where data for each language consists of a myriad of regional varieties. However, different regional varieties often employ different scripts to write the same language, rendering speech recognition output also subject to non-determinism in the output script. To mitigate this problem, we show that script is linearly encoded in the activation space of multilingual speech models, and that modifying activations at inference time enables direct control over output script. We find the addition of such script vectors to activations at test time can induce script change even in unconventional language-script pairings (e.g. Italian in Cyrillic and Japanese in Latin script). We apply this approach to inducing post-hoc control over the script of speech recognition output, where we observe competitive performance across all model sizes of Whisper.
Abstract:Large reasoning models (LRMs) achieve strong performance on mathematical reasoning tasks, often attributed to their capability to generate explicit chain-of-thought (CoT) explanations. However, recent work shows that LRMs often arrive at the correct answer before completing these textual reasoning steps, indicating the presence of latent reasoning -- internal, non-verbal computation encoded in hidden states. While this phenomenon has been explored in English, its multilingual behavior remains largely unknown. In this paper, we conduct a systematic investigation of multilingual latent reasoning in LRMs across 11 languages. Using a truncation-based strategy, we examine how the correct answer emerges as the model is given only partial reasoning traces, allowing us to measure stepwise latent prediction formation. Our results reveal clear evidence of multilingual latent reasoning, though unevenly: strong in resource-rich languages, weaker in low-resource ones, and broadly less observable on harder benchmarks. To understand whether these differences reflect distinct internal mechanisms, we further perform representational analyses. Despite surface-level disparities, we find that the internal evolution of predictions is highly consistent across languages and broadly aligns with English -- a pattern suggesting an English-centered latent reasoning pathway.




Abstract:Persona-assigned large language models (LLMs) are used in domains such as education, healthcare, and sociodemographic simulation. Yet, they are typically evaluated only in short, single-round settings that do not reflect real-world usage. We introduce an evaluation protocol that combines long persona dialogues (over 100 rounds) and evaluation datasets to create dialogue-conditioned benchmarks that can robustly measure long-context effects. We then investigate the effects of dialogue length on persona fidelity, instruction-following, and safety of seven state-of-the-art open- and closed-weight LLMs. We find that persona fidelity degrades over the course of dialogues, especially in goal-oriented conversations, where models must sustain both persona fidelity and instruction following. We identify a trade-off between fidelity and instruction following, with non-persona baselines initially outperforming persona-assigned models; as dialogues progress and fidelity fades, persona responses become increasingly similar to baseline responses. Our findings highlight the fragility of persona applications in extended interactions and our work provides a protocol to systematically measure such failures.
Abstract:Large language models (LLMs) are increasingly deployed in multilingual, real-world applications with user inputs -- naturally introducing typographical errors (typos). Yet most benchmarks assume clean input, leaving the robustness of LLMs to typos across languages largely underexplored. To address this gap, we introduce MulTypo, a multilingual typo generation algorithm that simulates human-like errors based on language-specific keyboard layouts and typing behavior. We evaluate 18 open-source LLMs across three model families and five downstream tasks spanning language inference, multi-choice question answering, mathematical reasoning, and machine translation tasks. Our results show that typos consistently degrade performance, particularly in generative tasks and those requiring reasoning -- while the natural language inference task is comparatively more robust. Instruction tuning improves clean-input performance but may increase brittleness under noise. We also observe language-dependent robustness: high-resource languages are generally more robust than low-resource ones, and translation from English is more robust than translation into English. Our findings underscore the need for noise-aware training and multilingual robustness evaluation. We make our code and data publicly available.
Abstract:Large reasoning models (LRMs) increasingly rely on step-by-step Chain-of-Thought (CoT) reasoning to improve task performance, particularly in high-resource languages such as English. While recent work has examined final-answer accuracy in multilingual settings, the thinking traces themselves, i.e., the intermediate steps that lead to the final answer, remain underexplored. In this paper, we present the first comprehensive study of multilingual CoT reasoning, evaluating three key dimensions: performance, consistency, and faithfulness. We begin by measuring language compliance, answer accuracy, and answer consistency when LRMs are explicitly instructed or prompt-hacked to think in a target language, revealing strong language preferences and divergent performance across languages. Next, we assess crosslingual consistency of thinking traces by interchanging them between languages. We find that the quality and effectiveness of thinking traces vary substantially depending on the prompt language. Finally, we adapt perturbation-based techniques -- i.e., truncation and error injection -- to probe the faithfulness of thinking traces across languages, showing that models rely on traces to varying degrees. We release our code and data to support future research.
Abstract:With over 2,000 languages and potentially millions of speakers, Africa represents one of the richest linguistic regions in the world. Yet, this diversity is scarcely reflected in state-of-the-art natural language processing (NLP) systems and large language models (LLMs), which predominantly support a narrow set of high-resource languages. This exclusion not only limits the reach and utility of modern NLP technologies but also risks widening the digital divide across linguistic communities. Nevertheless, NLP research on African languages is active and growing. In recent years, there has been a surge of interest in this area, driven by several factors-including the creation of multilingual language resources, the rise of community-led initiatives, and increased support through funding programs. In this survey, we analyze 734 research papers on NLP for African languages published over the past five years, offering a comprehensive overview of recent progress across core tasks. We identify key trends shaping the field and conclude by outlining promising directions to foster more inclusive and sustainable NLP research for African languages.
Abstract:Large language models (LLMs) are used globally across many languages, but their English-centric pretraining raises concerns about cross-lingual disparities for cultural awareness, often resulting in biased outputs. However, comprehensive multilingual evaluation remains challenging due to limited benchmarks and questionable translation quality. To better assess these disparities, we introduce MAKIEval, an automatic multilingual framework for evaluating cultural awareness in LLMs across languages, regions, and topics. MAKIEval evaluates open-ended text generation, capturing how models express culturally grounded knowledge in natural language. Leveraging Wikidata's multilingual structure as a cross-lingual anchor, it automatically identifies cultural entities in model outputs and links them to structured knowledge, enabling scalable, language-agnostic evaluation without manual annotation or translation. We then introduce four metrics that capture complementary dimensions of cultural awareness: granularity, diversity, cultural specificity, and consensus across languages. We assess 7 LLMs developed from different parts of the world, encompassing both open-source and proprietary systems, across 13 languages, 19 countries and regions, and 6 culturally salient topics (e.g., food, clothing). Notably, we find that models tend to exhibit stronger cultural awareness in English, suggesting that English prompts more effectively activate culturally grounded knowledge. We publicly release our code and data.
Abstract:The reliability of large language models (LLMs) is greatly compromised by their tendency to hallucinate, underscoring the need for precise identification of knowledge gaps within LLMs. Various methods for probing such gaps exist, ranging from calibration-based to prompting-based methods. To evaluate these probing methods, in this paper, we propose a new process based on using input variations and quantitative metrics. Through this, we expose two dimensions of inconsistency in knowledge gap probing. (1) Intra-method inconsistency: Minimal non-semantic perturbations in prompts lead to considerable variance in detected knowledge gaps within the same probing method; e.g., the simple variation of shuffling answer options can decrease agreement to around 40%. (2) Cross-method inconsistency: Probing methods contradict each other on whether a model knows the answer. Methods are highly inconsistent -- with decision consistency across methods being as low as 7% -- even though the model, dataset, and prompt are all the same. These findings challenge existing probing methods and highlight the urgent need for perturbation-robust probing frameworks.
Abstract:Post-hoc interpretability methods typically attribute a model's behavior to its components, data, or training trajectory in isolation. This leads to explanations that lack a unified view and may miss key interactions. While combining existing methods or applying them at different training stages offers broader insights, these approaches usually lack theoretical support. In this work, we present ExPLAIND, a unified framework that integrates all three perspectives. First, we generalize recent work on gradient path kernels, which reformulate models trained by gradient descent as a kernel machine, to more realistic training settings. Empirically, we find that both a CNN and a Transformer model are replicated accurately by this reformulation. Second, we derive novel parameter- and step-wise influence scores from the kernel feature maps. We show their effectiveness in parameter pruning that is comparable to existing methods, reinforcing their value for model component attribution. Finally, jointly interpreting model components and data over the training process, we leverage ExPLAIND to analyze a Transformer that exhibits Grokking. Among other things, our findings support previously proposed stages of Grokking, while refining the final phase as one of alignment of input embeddings and final layers around a representation pipeline learned after the memorization phase. Overall, ExPLAIND provides a theoretically grounded, unified framework to interpret model behavior and training dynamics.